神经密度估计值证明在各种研究领域进行高效的仿真贝叶斯推理方面具有显着强大。特别是,Bayesflow框架使用两步方法来实现在仿真程序隐式地定义似然函数的设置中的摊销参数估计。但是当模拟是现实差的差异时,这种推断是多么忠实?在本文中,我们概念化了基于模拟的推论中出现的模型误操作的类型,并系统地研究了这些误操作下的Bayesflow框架的性能。我们提出了一个增强优化目标,它对潜伏数据空间上的概率结构施加了概率结构,并利用了最大平均差异(MMD)来检测推理期间的可能灾难性的误操作,破坏了所获得的结果的有效性。我们验证了许多人工和现实的误操作的检测标准,从玩具共轭模型到复杂的决策和疾病爆发动态的复杂模型应用于实际数据。此外,我们表明后部推理误差随着真实数据生成分布与潜在摘要空间中的典型模拟集之间的常数而增加。因此,我们展示了MMD的双重实用性作为检测模型误操作的方法和作为验证摊销贝叶斯推理的忠实性的代理。
translated by 谷歌翻译
Linear partial differential equations (PDEs) are an important, widely applied class of mechanistic models, describing physical processes such as heat transfer, electromagnetism, and wave propagation. In practice, specialized numerical methods based on discretization are used to solve PDEs. They generally use an estimate of the unknown model parameters and, if available, physical measurements for initialization. Such solvers are often embedded into larger scientific models or analyses with a downstream application such that error quantification plays a key role. However, by entirely ignoring parameter and measurement uncertainty, classical PDE solvers may fail to produce consistent estimates of their inherent approximation error. In this work, we approach this problem in a principled fashion by interpreting solving linear PDEs as physics-informed Gaussian process (GP) regression. Our framework is based on a key generalization of a widely-applied theorem for conditioning GPs on a finite number of direct observations to observations made via an arbitrary bounded linear operator. Crucially, this probabilistic viewpoint allows to (1) quantify the inherent discretization error; (2) propagate uncertainty about the model parameters to the solution; and (3) condition on noisy measurements. Demonstrating the strength of this formulation, we prove that it strictly generalizes methods of weighted residuals, a central class of PDE solvers including collocation, finite volume, pseudospectral, and (generalized) Galerkin methods such as finite element and spectral methods. This class can thus be directly equipped with a structured error estimate and the capability to incorporate uncertain model parameters and observations. In summary, our results enable the seamless integration of mechanistic models as modular building blocks into probabilistic models.
translated by 谷歌翻译
For improving short-length codes, we demonstrate that classic decoders can also be used with real-valued, neural encoders, i.e., deep-learning based codeword sequence generators. Here, the classical decoder can be a valuable tool to gain insights into these neural codes and shed light on weaknesses. Specifically, the turbo-autoencoder is a recently developed channel coding scheme where both encoder and decoder are replaced by neural networks. We first show that the limited receptive field of convolutional neural network (CNN)-based codes enables the application of the BCJR algorithm to optimally decode them with feasible computational complexity. These maximum a posteriori (MAP) component decoders then are used to form classical (iterative) turbo decoders for parallel or serially concatenated CNN encoders, offering a close-to-maximum likelihood (ML) decoding of the learned codes. To the best of our knowledge, this is the first time that a classical decoding algorithm is applied to a non-trivial, real-valued neural code. Furthermore, as the BCJR algorithm is fully differentiable, it is possible to train, or fine-tune, the neural encoder in an end-to-end fashion.
translated by 谷歌翻译
Recently, there has been increasing interest in synthesizing data to improve downstream text-to-SQL tasks. In this paper, we first examined the existing synthesized datasets and discovered that state-of-the-art text-to-SQL algorithms did not further improve on popular benchmarks when trained with augmented synthetic data. We observed two shortcomings: illogical synthetic SQL queries from independent column sampling and arbitrary table joins. To address these issues, we propose a novel synthesis framework that incorporates key relationships from schema, imposes strong typing, and conducts schema-distance-weighted column sampling. We also adopt an intermediate representation (IR) for the SQL-to-text task to further improve the quality of the generated natural language questions. When existing powerful semantic parsers are pre-finetuned on our high-quality synthesized data, our experiments show that these models have significant accuracy boosts on popular benchmarks, including new state-of-the-art performance on Spider.
translated by 谷歌翻译
In this paper a global reactive motion planning framework for robotic manipulators in complex dynamic environments is presented. In particular, the circular field predictions (CFP) planner from Becker et al. (2021) is extended to ensure obstacle avoidance of the whole structure of a robotic manipulator. Towards this end, a motion planning framework is developed that leverages global information about promising avoidance directions from arbitrary configuration space motion planners, resulting in improved global trajectories while reactively avoiding dynamic obstacles and decreasing the required computational power. The resulting motion planning framework is tested in multiple simulations with complex and dynamic obstacles and demonstrates great potential compared to existing motion planning approaches.
translated by 谷歌翻译
Whole slide images (WSI) are microscopy images of stained tissue slides routinely prepared for diagnosis and treatment selection in medical practice. WSI are very large (gigapixel size) and complex (made of up to millions of cells). The current state-of-the-art (SoTA) approach to classify WSI subdivides them into tiles, encodes them by pre-trained networks and applies Multiple Instance Learning (MIL) to train for specific downstream tasks. However, annotated datasets are often small, typically a few hundred to a few thousand WSI, which may cause overfitting and underperforming models. Conversely, the number of unannotated WSI is ever increasing, with datasets of tens of thousands (soon to be millions) of images available. While it has been previously proposed to use these unannotated data to identify suitable tile representations by self-supervised learning (SSL), downstream classification tasks still require full supervision because parts of the MIL architecture is not trained during tile level SSL pre-training. Here, we propose a strategy of slide level SSL to leverage the large number of WSI without annotations to infer powerful slide representations. Applying our method to The Cancer-Genome Atlas, one of the most widely used data resources in cancer research (16 TB image data), we are able to downsize the dataset to 23 MB without any loss in predictive power: we show that a linear classifier trained on top of these embeddings maintains or improves previous SoTA performances on various benchmark WSI classification tasks. Finally, we observe that training a classifier on these representations with tiny datasets (e.g. 50 slides) improved performances over SoTA by an average of +6.3 AUC points over all downstream tasks.
translated by 谷歌翻译
We present G-MSM (Graph-based Multi-Shape Matching), a novel unsupervised learning approach for non-rigid shape correspondence. Rather than treating a collection of input poses as an unordered set of samples, we explicitly model the underlying shape data manifold. To this end, we propose an adaptive multi-shape matching architecture that constructs an affinity graph on a given set of training shapes in a self-supervised manner. The key idea is to combine putative, pairwise correspondences by propagating maps along shortest paths in the underlying shape graph. During training, we enforce cycle-consistency between such optimal paths and the pairwise matches which enables our model to learn topology-aware shape priors. We explore different classes of shape graphs and recover specific settings, like template-based matching (star graph) or learnable ranking/sorting (TSP graph), as special cases in our framework. Finally, we demonstrate state-of-the-art performance on several recent shape correspondence benchmarks, including real-world 3D scan meshes with topological noise and challenging inter-class pairs.
translated by 谷歌翻译
Antrophonegic pressure (i.e. human influence) on the environment is one of the largest causes of the loss of biological diversity. Wilderness areas, in contrast, are home to undisturbed ecological processes. However, there is no biophysical definition of the term wilderness. Instead, wilderness is more of a philosophical or cultural concept and thus cannot be easily delineated or categorized in a technical manner. With this paper, (i) we introduce the task of wilderness mapping by means of machine learning applied to satellite imagery (ii) and publish MapInWild, a large-scale benchmark dataset curated for that task. MapInWild is a multi-modal dataset and comprises various geodata acquired and formed from a diverse set of Earth observation sensors. The dataset consists of 8144 images with a shape of 1920 x 1920 pixels and is approximately 350 GB in size. The images are weakly annotated with three classes derived from the World Database of Protected Areas - Strict Nature Reserves, Wilderness Areas, and National Parks. With the dataset, which shall serve as a testbed for developments in fields such as explainable machine learning and environmental remote sensing, we hope to contribute to a deepening of our understanding of the question "What makes nature wild?".
translated by 谷歌翻译
In this work we present a fast occupancy map building approach based on the VDB datastructure. Existing log-odds based occupancy mapping systems are often not able to keep up with the high point densities and framerates of modern sensors. Therefore, we suggest a highly optimized approach based on a modern datastructure coming from a computer graphic background. A multithreaded insertion scheme allows occupancy map building at unprecedented speed. Multiple optimizations allow for a customizable tradeoff between runtime and map quality. We first demonstrate the effectiveness of the approach quantitatively on a set of ablation studies and typical benchmark sets, before we practically demonstrate the system using a legged robot and a UAV.
translated by 谷歌翻译
在深度学习时代,注释的数据集已成为遥感社区的关键资产。在过去的十年中,发表了许多不同的数据集,每个数据集都为特定的数据类型以及特定的任务或应用程序设计。在遥感数据集的丛林中,很难跟踪已经可用的内容。在本文中,我们介绍了EOD -IEEE GRSS地球观察数据库(EOD) - 一个交互式在线平台,用于分类不同类型的数据集利用遥感图像。
translated by 谷歌翻译